DiR-labeled Embryonic Stem Cells for Targeted Imaging of in vivo Gastric Cancer Cells
نویسندگان
چکیده
Embryonic stem (ES) cells have great potential in applications such as disease modeling, pharmacological screening and stem cell therapies. Up to date, there is no related report on the use of ES cells as tracking and contrast reagents of cancer cells in vivo. Herein we report that DiR-labeled murine ES cells can recognize and target gastric cancer cells in vivo. DiR-labeled murine ES (mES) cells (5×10(6)) were intravenously injected into gastric tumor-bearing mice. The biodistribution of DiR-labeled mES cells was monitored by IVIS imaging within 24 h. Major organs were harvested and analyzed by immunofluorescence staining and Western blotting. Chemotaxis assay was employed to investigate the chemotaxis of ES cells tracking cancer cells. Fluorescent imaging results showed that DiR-labeled mES cells targeted gastric cancer tissue in vivo as early as 10 min post-injection, reaching a peak at 2h post-injection. Immunofluorescence staining and Western blotting results showed gastric cancer tissues specifically expressed SSEA-1. In vitro migration tests confirmed that mES cells actively moved to test sites with different concentration of CXCL12 in a dose-dependent manner. In conclusion, DiR-labeled mES cells may be used for gastric cancer targeted imaging in vivo, and have great potential in applications such as identifying and imaging of early gastric cancer in near future.
منابع مشابه
In Vivo Tracing of Human Umbilical Cord Matrix Stem Cells Useing MRI
Purpose: Human umbilical cord matrix (UCM) (Wharton jelly) stem cells labeling are tracking by MRI. Materials and Methods: After 48 hours incubation with USPIO human umbilical cord matrix (UCM) stem cells were labeled with USPIO by the means of receptor-mediated endocytosis. Prussian blue staining and Atomic absorption spectroscopy were performed to identify and show the iron oxide nanoparticle...
متن کاملFluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer
How to find early gastric cancer cells in vivo is a great challenge for the diagnosis and therapy of gastric cancer. This study is aimed at investigating the feasibility of using fluorescent magnetic nanoparticle (FMNP)-labeled mesenchymal stem cells (MSCs) to realize targeted imaging and hyperthermia therapy of in vivo gastric cancer. The primary cultured mouse marrow MSCs were labeled with am...
متن کاملHuman induced pluripotent stem cells labeled with fluorescent magnetic nanoparticles for targeted imaging and hyperthermia therapy for gastric cancer
OBJECTIVE Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. METHODS Human iPS cells were prepared and cultured for 72 h. The cultur...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملTargeted detection of the cancer cells using the anti-CD24 bio modified PEGylated gold nanoparticles: the application of CD24 as a vital cancer biomarker
Objective(s): The central role of molecular imaging modalities in cancer management is an undeniable fact that could help to diagnose cancer tumors in early stages. The main aim of this study is to prepare a novel targeted molecular imaging nanoprobe of CD24-PEGylated Au NPs to improve the ability of Computed tomography scanning (CT scan) outputs for both in vitro and in vivo detection of breas...
متن کامل